

Working at greater depth within the expected standard	
GD1. The pupil can reason about addition (e.g. pupil can reason that the sum of 3 odd numbers will always be odd).	
GD2. The pupil can use multiplication facts to make deductions outside known multiplication facts (e.g. a pupil knows that multiples of 5 have	
one digit of 0 or 5 and uses this to reason that 18 × 5 cannot be 92 as it is not a multiple of 5).	
GD3. The pupil can work out mental calculations where regrouping is required (e.g. 52 – 27; 91 – 73).	
GD4. The pupil can solve more complex missing number problems (e.g. $14 + \Box - 3 = 17$; $14 + \Delta = 15 + 27$).	
GD5. The pupil can determine remainders given known facts (e.g. given 15 ÷ 5 = 3 and has a remainder of 0, pupil recognises that 16 ÷ 5 will	
have a remainder of 1; knowing that 2 × 7 = 14 and 2 × 8 = 16, pupil explains that making pairs of socks from 15 identical socks will give 7 pairs	
and one sock will be left).	
GD6. The pupil can solve word problems that involve more than one step (e.g. which has the most biscuits, 4 packets of biscuits with 5 in each	
packet or 3 packets of biscuits with 10 in each packet?).	
GD7. The pupil can recognise the relationships between addition and subtraction and can rewrite addition statements as simplified	
multiplication statements (e.g. $10 + 10 + 10 + 5 + 5 = 3 \times 10 + 2 \times 5 = 4 \times 10$).	
GD8. The pupil can find and compare fractions of amounts	
GD9. The pupil can read the time on the clock to the nearest 5 minutes.	
GD10. The pupil can read scales in divisions of ones, twos, fives and tens in a practical situation where not all numbers on the scale are given.	
GD11. The pupil can describe similarities and differences of shape properties (e.g. finds 2 different 2-D shapes that only have one line of	
symmetry; that a cube and a cuboid have the same number of edges, faces and vertices but can describe what is different about them).	

Possible Assessment Activities

GD1. The pupil can reason about addition (e.g. pupil can reason that the sum of 3 odd numbers will always be odd).

Resources required

statement cards

Assessment Challenge: I can reason about addition

Always, Sometimes, Never

Take a challenge statement and investigate whether the statement is always, sometimes or never true

e.g.

Supporting resource

if you add two even numbers you	If you add two odd numbers you will	If you add an even and an odd	If an odd number is subtracted from
will always get an even answer	always get an odd number	number you will always get an odd	an even number you will always get
		number	an odd answer
if you add 3 odd numbers together	If an even number is halved you will	If an even number is doubled you	If any number is doubled you will
you will always get and odd answer	always get an odd number	will always get an even answer	always get and even answer
no matter how many even numbers			
you add together, the answer will			
always be even			

GD2 . The pupil can use multiplication	facts to make deduc	tions outs	ide knowr	multiplication facts (e.g. a pu	pil knows that multiples of 5	have one	digit of 0
or 5 and uses this to reason that 18×10^{-10}	5 cannot be 92 as it i	is not a m	ultiple of 5).			
Descurres required							
Resources required							
Assessment Challenge: I can reason a	bout multiplication						
For each calculation pick a number that	at could reasonably	be the ans	wer and e	xplain why you think this.			
19 x 5	84	95	93	19 x 2	35	33	38
19 x 10	190	185	187	17 x 2	34	35	33

Supporting resource

Challenge	Challenge	Challenge	Challenge
43 + 37	53 - 25	55 + 29	32 - 15
Challenge	Challenge	Challenge	Challenge
66 + 27	77 - 29	44 + 66	90 - 17

GD4. The pupil can solve more complex missing number problems (e.g. $14 + \Box - 3 = 17$; $14 + \Delta = 15 + 27$).				
Resources required				
resource required to support calculation				
Assessment Challenge: I can solve missing number problems				
Solve the missing box problems, you can use bar models or part- whole model	s to support you			
[]+11=25+14	17+ 15 = [] + 12			
8 + 18 + 5 = 3 + [] + 13	[]+2+21 = 22 + 12 + 4			

GD5. The pupil can determine remainders given known facts (e.g. given 15 ÷ 5 = 3 and has a remainder of 0, pupil recognises that 16 ÷ 5 will have a remainder of 1; knowing that 2 × 7 = 14 and 2 × 8 = 16, pupil explains that making pairs of socks from 15 identical socks will give 7 pairs and one sock will be left).

Resources required

Assessment task: I can solve problems that might have remainders

The sock challenge, can you work out the different sock challenges

5 pairs of socks = [] socks altogeth	er 15 socks = [] pairs of socks	19 socks = [] pairs of socks
10 pairs of socks = [] socks altogeth	er		

Hunslet Moor Primary School Key Stage 1 Maths Moderation Materials Interim Framework Checklist and activities

GD6. The pupil can solve word problems that involve more than one step (e.g. which has the most biscuits, 4 packets of biscuits with 5 in each packet or 3 packets of biscuits with 10 in each packet?).

Resources required

Word problems that involve addition subtraction, multiplication and halves and doubles

Assessment Challenge: I can solve two step problems

Pick a challenge card to solve.

Use your written and mental methods to help you solve the problems

GD7a. The pupil can recognise the relationships between addition and subtraction and can rewrite addition statements a statements (e.g. $10 + 10 + 10 + 5 + 5 = 3 \times 10 + 2 \times 5 = 4 \times 10$).	s simplified multiplication
Resources required	
Assessment Challenge: I can recognise relationships between addition and subtraction and multiplication Ice cream challenge I have £1.00 to spend. I buy a mix of ice creams (10p), lollies (5p) and ice pops (2p).	
Show 3 different ways of spending exactly £1.00.	

GD7b. The pupil can recognise the relationships between addition and subtraction and can rewrite addition statements as simplified multiplication statements (e.g. $10 + 10 + 5 + 5 = 3 \times 10 + 2 \times 5 = 4 \times 10$).

Resources required

grid paper / peg boards/ multi link cubes which will resource modelling arrays

Assessment Challenge: I can recognise relationships between addition and subtraction and multiplication

Using the amounts 18, 20 and 24, what arrays can you make?

Can you write any calculation sentences to go with the arrays?

GD8. The pupil can find and compare fractions of amounts

Resources required

Assessment Challenge: I can compare fractions of amounts

Read each statement carefully. Show your working out each time then ring the correct answer.

Which is greater,	Which is greater,	Who has more?
½ of 16 or ¼ of 20?	¼ of 1 metre or ½ of 60cm?	Tom has ½ of £10 Ben has ¼ of £24

Hunslet Moor Primary School Key Stage 1 Maths Moderation Materials Interim Framework Checklist and activities