## Working at greater depth within the expected standard



Possible Assessment Activities
GD1. The pupil can reason about addition (e.g. pupil can reason that the sum of 3 odd numbers will always be odd).
Resources required
statement cards
Assessment Challenge: I can reason about addition

## Always, Sometimes, Never

Take a challenge statement and investigate whether the statement is always, sometimes or never true
e.g.

$$
\begin{aligned}
& \text { If two even numbers are added } \\
& \text { together the total is an even number. } \\
& 6+6=12 \text {-even } \\
& 4+4=8 \text { even A } \\
& 100+100=200 \text {-even }
\end{aligned}
$$

Supporting resource

| if you add two even numbers you <br> will always get an even answer | If you add two odd numbers you will <br> always get an odd number | If you add an even and an odd <br> number you will always get an odd <br> number | If an odd number is subtracted from <br> an even number you will always get <br> an odd answer |
| :--- | :--- | :--- | :--- |
| if you add 3 odd numbers together <br> you will always get and odd answer | If an even number is halved you will <br> always get an odd number | If an even number is doubled you <br> will always get an even answer | If any number is doubled you will <br> always get and even answer |
| no matter how many even numbers <br> you add together, the answer will <br> always be even |  |  |  |

GD2. The pupil can use multiplication facts to make deductions outside known multiplication facts (e.g. a pupil knows that multiples of 5 have one digit of 0 or 5 and uses this to reason that $18 \times 5$ cannot be 92 as it is not a multiple of 5 ).

Resources required
Assessment Challenge: I can reason about multiplication
For each calculation pick a number that could reasonably be the answer and explain why you think this.

| $19 \times 5$ | 84 | 95 | 93 | $19 \times 2$ | 35 | 33 | 38 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $19 \times 10$ | 190 | 185 | 187 | $17 \times 2$ | 34 | 35 | 33 |

GD3. The pupil can work out mental calculations where regrouping is required (e.g. 52-27; 91-73).
Resources required
addition challenge
Assessment Challenge: I can add and subtract 2 digit numbers where regrouping is needed
Take the challenge cards and use mental strategies or number lines to support your addition
e.g.


Supporting resource

| Challenge | Challenge | Challenge | Challenge |
| :---: | :---: | :---: | :---: |
| $43+37$ | $53-25$ | $55+29$ | $32-15$ |
| Challenge | Challenge | Challenge | Challenge |
| $66+27$ | $77-29$ | $44+66$ | $90-17$ |

GD4. The pupil can solve more complex missing number problems (e.g. $14+\square-3=17 ; 14+\Delta=15+27$ ).
Resources required
resource required to support calculation
Assessment Challenge: I can solve missing number problems
Solve the missing box problems, you can use bar models or part- whole models to support you

| $[\quad]+11=25+14$ | $17+15=[\quad]+12$ |
| :---: | :---: |
| $8+18+5=3+[\quad]+13$ | $[1]+2+21=22+12+4$ |

GD5. The pupil can determine remainders given known facts (e.g. given $15 \div 5=3$ and has a remainder of 0 , pupil recognises that $16 \div 5$ will have a remainder of 1 ; knowing that $2 \times 7=14$ and $2 \times 8=16$, pupil explains that making pairs of socks from 15 identical socks will give 7 pairs and one sock will be left).

Resources required
Assessment task: I can solve problems that might have remainders
The sock challenge, can you work out the different sock challenges

| 5 pairs of socks $=[\quad]$ socks altogether | 15 socks $=[\quad]$ pairs of socks | 19 socks $=[$ ] pairs of socks |
| :--- | :--- | :--- |
| 10 pairs of socks $=[\quad]$ socks altogether |  |  |

GD6. The pupil can solve word problems that involve more than one step (e.g. which has the most biscuits, 4 packets of biscuits with 5 in each packet or 3 packets of biscuits with 10 in each packet?).

## Resources required

Word problems that involve addition subtraction, multiplication and halves and doubles

## Assessment Challenge: I can solve two step problems

Pick a challenge card to solve.
Use your written and mental methods to help you solve the problems

```
GD7a. The pupil can recognise the relationships between addition and subtraction and can rewrite addition statements as simplified multiplication
statements (e.g. 10+10+10+5+5=3\times10+2\times5=4\times10)
```

Resources required

Assessment Challenge: I can recognise relationships between addition and subtraction and multiplication
Ice cream challenge
I have $£ 1.00$ to spend. I buy a mix of ice creams (10p), Iollies (5p) and ice pops (2p).

Show 3 different ways of spending exactly $£ 1.00$.

```
GD7b. The pupil can recognise the relationships between addition and subtraction and can rewrite addition statements as simplified multiplication
statements (e.g. 10+10+10+5+5=3\times10+2\times5=4\times10)
```

Resources required
grid paper / peg boards/ multi link cubes which will resource modelling arrays
Assessment Challenge: I can recognise relationships between addition and subtraction and multiplication
Using the amounts 18,20 and 24 , what arrays can you make?
Can you write any calculation sentences to go with the arrays?

GD8. The pupil can find and compare fractions of amounts
Resources required
Assessment Challenge: I can compare fractions of amounts
Read each statement carefully. Show your working out each time then ring the correct answer.

| Which is greater, <br> $1 / 2$ of 16 or $1 / 4$ of 20 ? | Which is greater, <br> $1 / 4$ of 1 metre or $1 / 2$ of $60 \mathrm{~cm} ?$ | Who has more? <br> Tom has $1 / 2$ of $£ 10$ Ben has $1 / 4$ of $£ 24$ |
| :---: | :---: | :---: |

