Stage 2- Working towards the expected standard

1. The pupil can demonstrate an understanding of place value, though may still need to use apparatus to support them (e.g. by stating the difference in the tens and ones between 2 numbers i.e. 77 and 33 has a difference of 40 for the tens and a difference of 4 for the ones; by writing number statements such as $35<$ 53 and $42>36$).	
2. The pupil can count in twos, fives and tens from 0 and use counting strategies to solve problems (e.g. count the number of chairs in a diagram when the chairs are organised in 7 rows of 5 by counting in fives).	
3. The pupil can read and write numbers correctly in numerals up to 100 (e.g. can write the numbers 14 and 41 correctly).	
4. The pupil can use number bonds and related subtraction facts within 20 (e.g. $18=9+$?; $15=6+$?).	
5. The pupil can add and subtract a two-digit number and ones and a two-digit number and tens where no regrouping is required (e.g. $23+5 ; 46+20)$, they can demonstrate their method using concrete apparatus or pictorial representations.	
6. The pupil can recall doubles and halves to 20 (e.g. pupil knows that double 2 is 4, double 5 is 10 and half of 18 is 9).	
7. The pupil can recognise and name triangles, rectangles, squares, circles, cuboids, cubes, pyramids and spheres from a group of shapes or from pictures of the shapes.	

Stage 2- Working at the expected standard

WX1. The pupil can partition two-digit numbers into different combinations of tens and ones. This may include using apparatus (e.g. 23 is the same as 2 tens and 3 ones which is the same as 1 ten and 13 ones).	
WX2. The pupil can add 2 two-digit numbers within 100 (e.g. $48+35$) and can demonstrate their method using concrete apparatus or pictorial representations.	
WX3. The pupil can use estimation to check that their answers to a calculation are reasonable (e.g. knowing that $48+35$ will be less than 100).	
WX4.The pupil can subtract mentally a two-digit number from another two-digit number when there is no regrouping required (e.g. $74-33$).	
WX5. The pupil can recognise the inverse relationships between addition and subtraction and use this to check calculations and work out missing number problems (e.g. $\Delta-14=28)$.	
WX6. The pupil can recall and use multiplication and division facts for the 2,5 and 10 multiplication tables to solve simple problems, demonstrating an understanding of commutativity as necessary (e.g. knowing they can make 7 groups of 5 from 35 blocks and writing $35 \div 5=7$; sharing 40 cherries between 10 people and writing $40 \div 10=4 ;$ stating the total value of six 5 p coins).	
WX7. The pupil can identify $1_{3}, \frac{1}{4}$ whole.$\frac{1}{2} \frac{2}{4} \frac{3}{4} \quad$ and knows that all parts must be equal parts of the	
WX8. The pupil can use different coins to make the same amount (e.g. pupil uses coins to make 50 p in different ways; pupil can work out how many $£ 2$ coins are needed to exchange for a $£ 20$ note).	
WX9. The pupil can read scales in divisions of ones, twos, fives and tens in a practical situation where all numbers on the scale are given (e.g. pupil reads the temperature on a thermometer or measures capacities using a measuring jug).	
WX10. The pupil can read the time on the clock to the nearest 15 minutes.	
WX11. The pupil can describe properties of $2-D$ and $3-D$ shapes (e.g. the pupil describes a triangle: it has 3 sides, 3 vertices and 1 line of symmetry; the pupil describes a pyramid: it has 8 edges, 5 faces, 4 of which are triangles and one is a square).	

GD1. The pupil can reason about addition (e.g. pupil can reason that the sum of 3 odd numbers will always be odd).	
GD2. The pupil can use multiplication facts to make deductions outside known multiplication facts (e.g. a pupil knows that multiples of 5 have one digit of 0 or 5 and uses this to reason that 18×5 cannot be 92 as it is not a multiple of 5).	
GD3. The pupil can work out mental calculations where regrouping is required (e.g. $52-27 ; 91-73$).	
GD4. The pupil can solve more complex missing number problems (e.g. $14+$	$-3=17 ; 14+\Delta=15+27$).
GD5. The pupil can determine remainders given known facts (e.g. given $15 \div 5=3$ and has a remainder of 0, pupil recognises that $16 \div 5$ will have a remainder of $1 ;$ knowing that $2 \times 7=14$ and $2 \times 8=16$, pupil explains that making pairs of socks from 15 identical socks will give 7 pairs and one sock will be left).	
GD6. The pupil can solve word problems that involve more than one step (e.g. which has the most biscuits, 4 packets of biscuits with 5 in each packet or 3 packets of biscuits with 10 in each packet?).	
GD7. The pupil can recognise the relationships between addition and subtraction and can rewrite addition statements as simplified multiplication statements (e.g. $10+10+10+5+5=3 \times 10+2 \times 5=4 \times 10)$.	
GD8. The pupil can find and compare fractions of amounts	
GD9. The pupil can read the time on the clock to the nearest 5 minutes.	
GD10. The pupil can read scales in divisions of ones, twos, fives and tens in a practical situation where not all numbers on the scale are given.	
GD11. The pupil can describe similarities and differences of shape properties (e.g. finds 2 different 2-D shapes that only have one line of symmetry; that a cube and a cuboid have the same number of edges, faces and vertices but can describe what is different about them).	

